Wideband HF RF choke design for QRO operation. V2.

I have now continued the investigation into a possible design for a wideband HF RF choke for QRO applications. The criteria is that the R part of the R+jX load the choke present to the common mode current on a coax should be so high that there is low risk of overheating the core even for QRO operation. It turns out that two main loops that gives sufficient resistive (and reactive load) that covers the lower frequency range combined with another loop with smaller diameter and fewer cores that takes care of the upper frequency range will give quite good results. This is similar to what GM3SEK has observed and described in his publication. Vector network analyzer measurements confirms this.

Above the three choke sections can be observed
DSC_5174 DSC_5173 DSC_5167 DSC_5186 DSC_5175 DSC_5169
Above, the measuring setup can be seen. On the right there is a multicore choke that was  tried. It gives a big resistive and inductive peak low in the frequency range. Far more than required. The cost will be high due to the many cores and is not justified. Therefore a 3 + 3 + 2 design was found more optimal.

Above the resistive (blue) load to the common mode current, the inductive load (red) to the common mode current and the Q (green) for the choke can be studied. The choke presents around 1000 ohms resistive to HF current in the frequency range of approx 2,5-25 Mhz. Another material could probably have been added to prevent the drop above 25 Mhz. 10 Meter would be a bit marginal for QRO operation with a lot of common mode current.