New front end for use of the Red Pitaya in SDR applications

The Red Pitaya SDR board is based on the Xilinx Zync SOC and has 14 bit external A/D converters. However, for SDR usage on the HF bands from 0.1-30 MHz (and for that matter up to 50 MHz) the Red Pitaya is a bit “deaf” in the stock configuration. I have made a broadband amplifier that has a fairly high gain and very good IIP3 properties. Below I have posed some pictures of the prototype amplifier.

20160424_153046-1This is the prototype amplifier. I inserted a ferrite ring on the input lead to roll off the VHF / UHF sensitivity to reduce problems with nearby broadcasters etc. There is a also a PI network attenuator on the ouput and I have inserted a couple of beads in that as well to roll of the outpu response when frequency increases. The other components in the lower part is a input pi attenuator I used when I did some VNA frequency response measurements. This as well as the RCA plus is not used (RCA plugs are surprisingly good for low level RF signal routing in the HF bands and nice to use in the lab).  I used a more professional attenuator with a large attenuation range and flat response to determine the proper attenuation level after the preamp into the Red Pitaya. Reducing gain after the first amplifier has very little effect on the noise figure. Reducing it before the first amplifier directly adds to the noise figure. I added some protection diodes over the input to reduce the risk of strong RF signals or static voltage build up damaging the input. Below I am measuring the response of the attenuator with the DG8SAQ VNA. It was flat from 0-1,3 GHz.

20160424_203234-1

20160424_14035020160424_232930

 

 

 

HDSDR trackerball VFO project

I have been working on a trackball based controller for my HDSDR SDR project lately. This is a small R&D project that is run on my spare time where the goal is to determine if it is possible to use a trackball as a VFO for software defined radio (SDR) in contests. The project started out based on a demand for a more ergonomic way to operate a mult receiver in a contest environment that is less fatiguing during 48hours duration of a major contest like CQWW or CQWPX. The goal is that it should be possible to operate all radio functions you need from one hand only: VFO, speed of vfo, band, mode, filter width, volume, gain. I have modified a Marconi trackball and the controller is a Trinket Pro controller (Arduino)

20151219_131116 20151219_130846 20151219_123341 20151219_163343
20151217_211347 20151217_211710

20151219_153628

 

Repair of LDG automatic antennatuner

I blasted my LDG antennatuner some time ago. Or …. I thought I blasted it….. It appeared that it was only the resistor in the SWR detector circuit that got burned out. I replaced that resistor and now its ok again.It was easy to repair. However these small LDG tuners dont take more than 100W max. The designers have used ferrite cores, whereas it would have been a much better idea to use carbonyl cores or air core inductors. The latter doesnt get so easily saturated.

20150828_113855 20150828_102444 20150828_102215 20150828_101339

However I must say that the design of the LDG equipment I have seen so far is not very impressive. Why use that BIG chasis when you dont need it? Why use DB9 style connectors on a chassis that is supposed to be watertight? Look at that coax termination there. Both on the board and on the PL259 chassis connector. Why use RG174 teflon coax when you have such crappy terminaions? Perhaps it would be better with no coax at all 🙂 However when the tuner works it works fairly OK. Just dont trust this kind of equipment in a contest or on a dx expedition.

Azores Island Hunt. Captioned pictures from CU2ARA

IMG_0836
The teams are arriving at the airport in Ponta Delgada at Sao Miguel island. A lot of luggage was brought in. Here the
Danish and German teams are waiting for their taxis. The DARC journalist is checking his photos on the digital camera as well to the left.
IMG_0837
A too small car for rigs, linears and antennas when 9  teams arrive at the same time…
IMG_0844
A team photo was taken in the backyard of the CU2ARA club station before teams were departing to their individual islands
IMG_0846
Antenna and rig discussions are taking place in the backyard. The short CU2ARA tower that we used can be seen in the middle of the picture
IMG_0843
Our guide Mr. Rui is also a pro photographer. Just look at all the cameras!
IMG_1038
Ghis ON5NT is busy adjusting the inverted vee antenna to resonance
IMG_1043
Marius, LB3HC is using his DG8SAQ Vector Network Analyzer to check the multiband antennas before the event.The CU2ARA members CU2IF and CU2CN and are helping out
IMG_1015
The organizing committee is formally opening the event!
IMG_1080 Since we had a city location with some noise, we wanted to do a remote hilltop station experiment to learn from that experience for future events. After first checking with the official organizers for  approval, we travelled to one of the points in the island where there is almost 360 degrees negative horizon and no broadcast installations.This would enable a good remote location. On the above picture you can see the takeoff towards Europe. Wow! We did have some technical challenges that were solved, but the main QSO amount by far was made with the main stations down at CU2ARA. The remote station was left operational so the CU2 ops could do more work on it after the event IMG_1127  Above:
CU2CN climbs the tower on the mountaintop to put up the highest point of our sloping antenna. The antenna was sloping towards west (US).
IMG_1077
Here is the house where the experimental remote station was mounted. We had a 100mbit/sec WLAN connection down to CU2ARA.
IMG_1132
Another picture of the takeoff to the east (against Europe). A pretty good QTH for the remote site.  (The Azores are full of beautiful views like this. Visit to see for youself!)
IMG_1155
Our remote station is located inside the hilltop house. A Yaesu FT857 and HRD was used. More dedicated remote systems should be used in a future event it was decided.
IMG_1158
Here is the HRD remote screen where we controlled the hilltop remote station. This was done down in the city where the CU2ARA shack is located. (As OH2BH encouraged, we did it the innovative Arcala way!). Notice the Norwegian flag by the way!
IMG_1170
ON5NT is working pileup
IMG_1185
LB3HC is working pileup
IMG_1160
The CU2ARA residents are working pileup
IMG_1189
Our antennas downtown at CU2ARA. We used a 3 el yagi for 20 meters and inverted vees for the other bands (17 and 40).

AÇORES PT

How to control the plane when using the rectangle tool in Sketchup

Sketchup is a nice 3D drawing program. It is also free. (Lets hope it will stay that way after Trimble bought Sketchup from Google).

One very annoying “feature” of Sketchup that makes many new users abandon the tool is that there seems to be no way to control the plane you draw a rectangle onto (when using the rectangle tool). The arrow buttons don’t work (why?) and it seems arbitrary what  plane the rectangle ends up on. Thanks to the nice people over at Sketchuation, I learned a secret: the rectangle locks on to the PLANE THAT IS MOST PARALELL to the PLANE OF YOUR SCREEN! TRY IT!

image Now the rectangles are drawn on the blue-red plane.

image Now the rectangles are drawn on the blue green plane.

By the way, the shift lock doesn’t seem to work properly even if the Sketchup documentation seems to indicate that it should

Is lead based solder banned for all electronic purposes?

KESTER SOLDER24-6040-0066Many sources on the internet seems to indicate that lead based solder is no longer possible to purchase and is in fact banned for use in electronics. However, this is not the case. It is correct that the EU has passed a regulative that prohibits the use of lead based solder in new consumer electronic products. However, the use of lead based solder for repair of older equipment is still perfectly OK as far as I know. Also, new military electronics is ok to manufacture with lead based solder. I was starting to worry about soldering problems that may affect many amateur radio projects like soldering PL259 coax connectors, after my supply of solder went out. With leadfree solder, a much higher temperature is often necessary to use. The center of the non teflon PL259 connectors then melts and several other problems occur. The leadfree solder doesn’t flow as well as lead based. I us the 60 Sn / 40Pb variant that has been the standard for decades. Farnell sells it and has it in stock.  I have replenished the stock to last for several years in different thicknesses so i have for SMD, hole mounted, plugs and larger devices.

Here are Farnell’s ordering codes for good old lead based solder:

1610446 SOLDER, 40/60 2.36MM 453G;
419310 SOLDER WIRE, 60/40, 1.63MM, 500G;
453614 SOLDER WIRE, 60/40, 1.0MM, 500G;
5090787 SOLDER WIRE, 60/40, 0.5MM, 250G;
5090830 SOLDER WIRE, 60/40, 0.7MM, 500G;

Just go ahead and order so you have solder supplies for hobby use for 30 years. Not easy to know what the bureaucrats in EU will think up next!

HD videocamera with flash storage for USD 39

For some time several vendors in Hong Kong has offered HD video cameras for below USD 50. There are several versions of these cameras. Some cameras are good and some are not so good. Over at RCgroups http://www.rcgroups.com/forums/showthread.php?t=1556994 they have done extensive testing of the type 808 #16 camera.

image image image

cmos_sens The inside details and the chassis can be seen in the above pictures. In the left picture, it can be seen that the designer has used a image sensor that has been designed for the cellphone industry. There is a detachable lens (with threads in some of the sensors used) and the lens is attached to the mainboard via a flexiprint and via a controlled impedance and controlled delay connector. The sensor has the type designation OV9712. It can deliver 1280×800 in 30 fps or 720p WXGA HD format. The sensor has gain control, color balance control, and can even correct distortions caused by optics on die. Here is the datasheet of the sensor: http://www.ovt.com/products/sensor.php?id=29   There is a memory chip and a System On Chip (SOC) on the printed circuit board. The SOC has the designation NT96632BG. This SOC appears to me manufactured by the Taiwanese company Novatek . Their website was slow when I visited it, but here is the link http://www.novatek.com.tw/products/SoCSolutions.asp The manufacturer says this about their chip: “Novatek provides DSC/DV SoC solution, which features high image quality, high performance, excellent digital still image capturing and video streaming capabilities at a cost effective base. It is targeted for the application of VGA to 32M pixel DSC/DV resolutions. It can be easily adapted to many CCD and CMOS sensors with on chip programmable interface timing approach. Novatek’s DSC/DV controller provides sophisticated video processing methods with built-in hardware acceleration pipeline. Hardware H.264 video CODEC is embedded with The HDMI 1.3 Tx.“ A significant feature would be analog low latency video out. Then this camera would be ideal for FPV RC flying.

There is a reliable Ebay source for this camera here: eletoponline365

SMD resistor lab kit

image

Finally Elfa has increased their range of SMD lab kits. It is somewhat difficult to select the kits from their webpage (that detoriated after they started to use SAP). The manufacturer Nova has a website with better information. You can check out the resistor kit pictured above here http://www.nova-elektronik.de/en/compcards/chip0805.php 

image

Nova also has capacitor kits. Their SMC-36 kit contains 6030 pcs. SMD ceramic capacitors in size 0603. (6 mil x 3 mil). The range is E6 to 4,7pF with CØG dielectricum. Then they have a 6,6 pF to cover the gap and after that the kits includes the E12 series up to 680 pF. This also CØG dielectricum. Wikipedia has some info about C0G diectricum here: http://en.wikipedia.org/wiki/Ceramic_capacitor You can probably use < pF values up to approx 1400 Mc/s (Megacycles per second = 1/p = Megahertz, p= period) before hitting the self resonant frequency.

By the way the information in Elfas catalog is inaccurate in a lot of areas so make sure to do research before you order from them. For example they stated that the above resistors can dissipate 1W. The manufacturers datasheet says 0,1W. Only a factor of 10 wrong. (Probably due to that incompetent spotty teenagers are making their catalogs these days, instead of engineers?)